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Soft depletion in binary fluids
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We show theoretically that a binary fluid characterized on a mesoscopic scale by purely repulsive short-
range interactions without cores possesses an effective attraction between like particles. This‘‘soft depletion
effect’’ is a generic phenomenon driving a mixing-demixing transition in a binary system with pure repulsions.
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Interactions in complex fluids on a mesoscopic scale
conventionally modeled bysoft potentials—short-range re-
pulsions without cores with the range given by a cutoff
dius~for a recent review see Ref.@1#!. The ‘‘particles’’ in this
picture represent liquid elements or lumps of molecu
rather than atoms in a simple fluid. Soft potentials are s
cessfully used in polymer theory where the underlying ph
ics is based on the fractal nature of the objects such as p
mer coils, star polymers, and dendrimers@2#. For example,
interaction between the centers of mass of polymer coils
an athermal solvent is adequately described by a ‘‘Gaus
core model’’~GCM! @3#, where the repulsive potential

u~r !5e exp~2r 2/r c
2!, e.0, ~1!

is finite for all separationsr and characterized by a cuto
distance of the order ofr c , the radius of gyration of the
coils; e sets the energy scale. The mesoscopic approac
also used in computer simulations of large-scale phenom
in fluids within the dissipative particle dynamics~DPD!
method@4# where the interactions between fluid ‘‘particles
are usually described by a parabolic model~PM!

u~r !5H e S 12
r

r c
D 2

, 0<r<r c

0, r>r c ,

which can be obtained by averaging the molecular field o
the rapidly fluctuating motions of atoms during short tim
intervals@5#.

In the framework of this coarse-grained description,
consider abinary fluid mixtureof speciesa andb character-
ized by purely repulsive soft potentialsut1t2

(r i j ), t1 ,t2

5a,b with the energy scaleset1t2
and length scalesr ct1t2

.

In the present paper, we show that such a system poss
an effective attraction between like particles for sufficien
strong unlike interactions. This effect can be termed s
depletion by analogy with hard-core depletion in colloid
systems@6#. The theory we develop is insensitive to a pa
ticular form of soft potentialsut1t2

.

The Helmholtz free energy of the system ofNa particles
of speciesa andNb particles of speciesb in the volumeV at
a temperatureT is
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e2bF5E dRNa e2bUaaE drNb e2b[Ubb1Uab] , ~2!

where Uaa(R
Na)5(1< i , j <Na

uaa(Ri j ), Ubb(r
Nb)

5(1< i , j <Nb
ubb(r i j ) are the bare Hamiltonians of particle

a and b, respectively, Uab(R
Na,rNb)5( i 51

Na ( j 51
Nb uab(uRi

2r j u) is the total energy of unlike interactions,b
51/(kBT), kB is the Boltzmann constant. Introducin
F 8(RNa;T,rb),

e2bF 85E drNbe2b[Ubb(rNb)1Uab(RNa,rNb)] , ~3!

we can write Eq.~2! as

e2bF5E dRNa e2bHeff,

where

Heff~RNa;rb ,T!5Uaa~RNa!1F 8~RNa;rb ,T! ~4!

is the effective Hamiltonian ofa particles in the presence o
the b component,rb5Nb /V. From the form of Eq.~3!, it is
clear thatF 8(RNa;T,rb) is the Helmholtz free energy ofb
particles in the external field imposed by a fixed configu
tion RNa of the a component. Using thealgebraic perturba-
tion theory@7# based on Ruelle’s rigorous expansion@8#, one
can writeF 8 in the exact form

F 85Fb2kBT(
n51

` rb
n

n!
jn , ~5!

whereFb(Nb ,V,T) is the free energy of the pureb system
and

jn5E drnS )
k51

n

f extk
RNaD hb

(n)~rn;rb ,T!.

Herehb
(n)(rn;rb ,T) are algebraic combinations of the corr

lation functions of orders 1 –n of the pureb system and

f extk
RNa

5expF2b(
i 51

Na

uab~ uRi2r ku!G21

is the Mayer function of theb particle in the external field of
all a particles. We emphasize that Eq.~5! is not a virial-type
expression due to the dependence ofhb

(n) on rb for n>2.
The structure ofhb

(n) provides convergence of the integral
©2003 The American Physical Society01-1
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hb
(1)[1 and for all n>2 the functionshb

(n)(rn) vanish at
large interparticle separations. Forj1 and j2, we have@7#

j15*dr1f ext1
RNa , j25*dr1dr2 f ext1

RNaf ext2
RNa hb(r 12), where

hb(r 12;rb ,T) is the total pair correlation function of the pur
b system.

The energy scale of a potential depends on a system u
study. For example, for polymers the renormalization gro
analysis and simulation studies@1# show thate in Eq. ~1! is
of the order ofkBT and decreases with increasing degree
polymerization or with worsening of solvent quality. It
therefore plausible to study the case of smallbeab , the as-
sumption that enables to facilitate model calculations~note
that the inverse casebeab→` corresponds to the hard-cor

limit !. Expandingf extk
RNa , to the second order inbuab we ob-

tain

j15NaE dr H 2buab~r !1
1

2
b2@uab~r !#2J

1b2 (
1< i , j <Na

E dr uab~r !uab~ ur1Ri j u!, ~6!

j25b2NaE dr1dr2 uab~r 1!uab~r 2!hb~r 12!

12b2 (
1< i , j <Na

E dr1dr2 uab~ uRi2r1u!uab~ uRj

2r2u!hb~r 12!. ~7!

From Eqs.~5!, ~6!, and~7!, F 8 reads

F 85Fb1Fself1 (
1< i , j <Na

Du~Ri j ;rb ,T!. ~8!

Here,Fself is the average energy of noninteractinga particles
in the external field of the other species and therefore ca
termed as the ‘‘self-energy’’:

Fself5Na uself~rb ,T!, ~9!

uself~rb ,T!5rbE dr H uab~r !2
1

2
b@uab~r !#2J

2
1

2
brb

2E dr1dr2 uab~r 1!uab~r 2!hb~r 12!.

~10!

Note that Eq.~10! takes into account fluctuations of th
field. Fself is similar to the ‘‘volume term’’ encountered in
the models of charged colloidal suspensions@9#. The last
contribution to F 8 contains Du5Du1(Ri j ;rb ,T)
1Du2(Ri j ;rb ,T) with

Du152brbE dr uab~r !uab~ ur1Ri j u!,

Du252brb
2E dr1dr2 uab~ uRi2r1u!uab~ uRj2r2u!hb~r 12!.

Summarizing, we obtain from Eqs.~4! and ~8!
01010
er
p

f

be

Heff~RNa;rb ,T!5Fb1Fself1(
i , j

ueff~Ri j ;rb ,T!, ~11!

where

ueff~Ri j ;rb ,T!5uaa~Ri j !1Du~Ri j ;rb ,T! ~12!

is the effective pair potential ofa particles in the presence o
b particles. Note thatDu appears in the second-order~in uab)
perturbation theory, whereas in the first-order theory, inter
tion betweena particles remains unchanged.

Calculation ofDu requires the knowledge ofhb(r ;rb ,T).
That is why we first discussthermodynamics of a pure sys
tem setting r c51 and omitting the subscript (a or b). The
isothermal compressibilityx

T
is related toh(r ) via the com-

pressibility equation of state:rkBTx
T
511rh̃(k50), which

using the Ornstein-Zernike equation yields

1

kBT

dp

dr
512r c̃~k50!. ~13!

Here,p is the pressure,h̃(k) and c̃(k) are the Fourier trans
forms of h(r ) and the direct correlation functionc(r ), re-
spectively. We apply the random phase approximation~RPA!
setting c(r )52bu(r ). Monte Carlo simulations of GCM
demonstrated that RPA accounts well for pair correlatio
and equation of state@10,11#. One can expect this to be als
true for other soft potentials. The Fourier transforms ofc(r )
for GCM and PM read, respectively,

c̃GCM~k!52p3/2be expS 2
1

4
k2D ,

c̃PM~k!528pbeFk cosk23 sink12k

k5 G .

Integrating Eq.~13!, we obtain

p/~kBT! 5r1kber2 ~14!

with kGCM5 1
2 p3/2 and kPM5p/15. The absence of a cor

has an important impact on the thermodynamic behavior:
pressure increases very slowly with the density,pa;ra

2 .
This statement is confirmed by the DPD simulations of P
@4#, where the equation of state was found to be of the ty
~14! with kPM

DPD'0.20260.002, which is in a very good
agreement with ourkPM'0.209. The functionh(r ) is given
by the inverse Fourier transform:

h~r ;r,T!5
1

2p2r
E

0

`

dkF kc̃~k!

12r c̃~k!
Gsin~kr !. ~15!

Now we have all the necessary ingredients to study
effective potential given by Eq.~12!. It is sensitive to the
range and energy scales of interactions, as well as to
temperature and density. If the unlike interactions are str
ger than the like ones and/or more long ranged, one
expect theeffective attraction between like particlesat suffi-
ciently low temperatures, the effect which can be term
‘‘soft depletion,’’ since it is similar~but not identical! to
1-2
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depletion in a mixture of hard-core particles. In the mod
proposed by several authors@6#, the effective attraction in a
system of mutually repelling particles was discussed
hard-sphere interactions where this effect is of entropic
gin. For particles without cores, both entropic and energ
contributions to the free energy are important. Figure
shows the effective potential ofa particles in a ‘‘symmetric’’
GCM mixture (eaa5ebb , r caa

5r cbb
) at the temperaturet

5kBT/eab51.2. The values of interaction parameters areg
5eaa /eab50.2, anda5r caa

/r cab
51. Curves are labeled b

the value of the reducedb particle densityrb* 5rbr cab

3 . At

low densities,rb,0.45, interactionueff(R12) betweena par-
ticles is repulsive at short distances, reaches a minim
beyond which it becomes attractive tending asymptotically
zero at largeR12. The increase inrb results in stronger at
tractive forces~given by the slope of the potential curve!
which at the same time become more short ranged. Forb
.0.45, the potential curves show oscillatory behavior:
yond the pointRm* , whereueff is at its maximum~e.g., for
rb51, Rm* '1.9), the attractive part is followed by a repu
sive tail. Soft depletion does not occur in the case wh
unlike repulsion is weaker than repulsion between like p
ticles, i.e., wheng.1. The same qualitative features albe
for different values ofrb* are shared by PM as shown in Fi
2. The appearance of the oscillatory part inueff at high rb
suggests that the multibody terms in effective interact
may be important at highrb , while at lowrb they are insig-
nificant.

Soft depletion manifests itself by driving a phase tran
tion. To study the phase behavior of the binary system w
the Hamiltonian~11!, we consider its free energy

F5Feff~@ueff# !1Fself~Na ,rb ,T!1Fb~Nb ,V,T!. ~16!

Here, Feff is the free energy of the system ofa particles
interacting viaueff(R); Feff can be found by thermodynami
integration@12#. To this end, we introduce an auxiliary inte
action potentialu(n)(Ri j )5uaa(Ri j )1nDu(Ri j ), where 0
<n<1 is the coupling parameter; atn50, it reduces to the

FIG. 1. Effective interaction betweena particles for the Gauss
ian core model att5kBT/eab51.2 for variousrb ~solid lines!. The
curves are labeled by the value ofrbr cab

3 . Also shown is the pure

potentialuaa* 5uaa /eab ~dashed line!.
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a-a interactionu(n50)(Ri j )5uaa(Ri j ), while atn51 we re-
coverueff : u(n51)(Ri j )5ueff(Ri j ). Using the standard argu
ment, we obtain

Feff5Fa1
1

2
ra

2E
0

1

dnE dR1dR2 Du~R12!g
(n)~R12!,

where Fa is the free energy of the purea system, ra
5Na /V, andg(n)(R) is the pair correlation function of the
system with the potentialu(n) at the densityra and tempera-
ture T. To be consistent with the second-order~in uab) per-
turbation theory, we keep inFeff the term linear inDu, thus
replacingg(n)(R) with g(n50)(R)5ga(R), the pair correla-
tion function of the purea system. Integration overn yields
Feff5Fa1DF with

DF52pNarar cab

3 E
0

`

dx x2Du~x;rb!ga~x;ra!, ~17!

where x5R12/r cab
and ga5ha11 with ha given by Eq.

~15!.
Let us study first the behavior of the mixture at afixed

density of bparticles. Then,Fb in Eq. ~16! is an additive
constant and can be omitted. What we are left with is
single-component system with interactionsueff in the exter-
nal field whose average energy per particle isuself. The ef-
fective pressurep̄a is found from Eqs.~9!, ~14!, and~17!,

p̄a

kBT
5raF11rb

]buself

]rb
G1ra

2B̄,

where

B̄~ra ,rb ,T!

r cab

3
5kbeaaS r caa

r cab

D 3

12pE
0

`

dx x2FbDuga

1rb

]bDu

]rb
ga1bDura

]ga

]ra
G .

Monte Carlo simulations of apure GCM system@11# show
that at high densities, it behaves as a weakly correla
‘‘mean-field fluid.’’ This implies that at highra , ga shows an

FIG. 2. Effective interaction betweena particles for the para-
bolic model. Notations are the same as in Fig. 1.
1-3
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ideal-gas-like behavior andB̄ becomes virtually independen
of ra resulting in the equation of state of the form~14!; the
important difference from a pure system, however, is that
quadratic term can be both positive and negative. FoB̄

.0, the system is stable and homogeneous. IfB̄,0, the
system collapses. In a special case ofB̄50, the pressure
scales linearly withra ; hence, forB̄50 the systemat high
ra behaves as an ideal gas with the renormalized den
ra@11rb]buself/]rb#. These features make the effectiv
system qualitatively different from a van der Waals fluid
which at high densities the excluded volume effect alwa
dominates attractions thus being a stabilizing factor. The
fective system does not possess the liquid-vapor trans
with a characteristic van der Waals loop.

In order to search for possible phase transitions, we re
to the full binary mixture description introducing the reduc
total densityr t5(ra1rb)r cab

3 , the fractions of component

fa5Na /N, fb5Nb /N, N5Na1Nb satisfying fa1fb
51, and interaction parametersga5eaa /eab , gb
5ebb /eab , aa5r caa

/r cab
, ab5r cbb

/r cab
. Let us consider

the reduced free energy per particle

f 5
F

NkBT
.

The combined contribution of the purea andb systems tof is
obtained by integration of their equation of state~14!:

f pure5fa ln fa1fb ln fb1
r tk

t
~gaaa

3fa
21gbab

3fb
2!1 ln r t ,

where the term with the irrelevant de Broglie thermal wav
length is omitted. The contributionsf self and f D from Fself
and DF are obtained using Eqs.~9!, ~10!, ~15!–~17!: f self

1 f D5C(fb ,r t ;t)fafb , whereC(fb ,r t ;t) is calculated
numerically~the details are presented elsewhere@13#!. Thus,
the reduced free energy can be written as a function of
5fb andr t at a givent:
l.
.

ts

01010
e

ity

s
f-
n

rn

-

f ~f,r t!5f ln f1~12f!ln~12f!1
kr t

t
@gaaa

3~12f!2

1gbab
3f2#1C~f,r t ;t !f~12f!1 ln r t . ~18!

In the case of a symmetric mixture,ga5gb5g, aa5ab
5a, Eq. ~18! is simplified to

f sym~f,r t!5f ln f1~12f!ln~12f!1x~f,r t ;t !f~1

2f!1Fkr tga3

t
1 ln r tG , ~19!

where x(f,r t ;t)52 2kr tga3/t 1C(f,r t ;t). If we as-
sume thatr t is approximately constant, then apart from t
constant term in the square brackets, Eq.~19! has the form of
the Flory-Huggins expression for the free energyFFH of a
polymer mixture@14# if we identify f sym with FFH/kBT and
x with the Floryx-parameter~the possibility of the free en-
ergy density mapping to the Flory-Huggins model w
pointed out in Ref.@4#!. Possible phase transitions are
liquid-liquid and liquid-solid type. Applying the standard st
bility analysis, one can conclude that below a critical te
peratureTc(r t), the system is separated into thea-rich and
b-rich phases. The striking feature is that this mixin
demixing transition is caused by purely repulsive intera
tions. Note that our model does not invoke anya priori as-
sumptions about the unlike correlation functionscab(r ) and
hab(r ). This feature may be important since it is these int
actions that are responsible for the soft depletion.

In conclusion, the theory presented in this paper pred
the effect of soft depletion—an effective attraction betwe
like particles in a binary fluid with soft repulsive potentials
which occurs when the unlike repulsion is stronger than
repulsion between like particles. This effect is a generic p
nomenon driving the phase separation. We expect tha
high densities, the oscillatory part inueff will probably be
smoothed out by successive multibody terms in effective
teractions so that soft depletion will become mo
pronounced—a problem to be explored in future work.
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@3# B. Krüger, L. Scha¨fer and A. Baumga¨rtner, J. Phys.~Paris! 50,
3191 ~1989!.

@4# R.D. Groot, and P.B. Warren, J. Chem. Phys.107, 4423~1997!.
@5# B.M. Forest, and U.W. Sutter, J. Chem. Phys.102, 7256

~1995!.
@6# R. Roth, R. Evans and S. Dietrich, Phys. Rev. E62, 5360

~2000!, and references therein.
@7# V.I. Kalikmanov,Statistical Physics of Fluids. Basic Concep
and Applications~Springer, Berlin, 2001!; Phys. Rev. E59,
4085 ~1999!.

@8# D. Ruelle,Statistical Mechanics. Rigorous Results~Benjamin,
New York, 1969!.

@9# R. van Roij and J.-P. Hansen, Phys. Rev. Lett.79, 3082~1997!;
R. van Roij, M. Dijkstra, and J.-P. Hansen, Phys. Rev. E59,
2010 ~1999!; P.B. Warren, J. Chem. Phys.112, 4683~2000!.

@10# A.J. Archer and R. Evans, Phys. Rev. E64, 041501~2001!.
@11# A.A. Louis, P.G. Bolhuis, and J.-P. Hansen, Phys. Rev. E62,

7961 ~2000!.
@12# D. Frenkel and B. Smit,Understanding Molecular Simulation

~Academic Press, San Diego, 1996!.
@13# V.I. Kalikmanov ~unpublished!.
@14# G. Strobl,The Physics of Polymers~Springer, Berlin, 1996!.
1-4


