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Soft depletion in binary fluids
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We show theoretically that a binary fluid characterized on a mesoscopic scale by purely repulsive short-
range interactions without cores possesses an effective attraction between like particlésofTliispletion
effect” is a generic phenomenon driving a mixing-demixing transition in a binary system with pure repulsions.
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Interactions in complex fluids on a mesoscopic scale are . N Np e {Ups U
conventionally modeled bgoft potentials—short-range re- e ! ZJ dRNag™# an drio e AlUbptlal - (2)
pulsions without cores with the range given by a cutoff ra-
dius (for a recent review see Réfl]). The “particles” in this  \where U a(RNa) = El<i<j<Nauaa(Rij): Upp(re)

picture represent liquid elements or lumps of molecules_ U (1) are the bare Hamiltonians of particles
rather than atoms in a simple fluid. Soft potentials are suc- ~ = ~/=No bi(i)) N, P

cessfully used in polymer theory where the underlying phys& and b, respectively, Uab(RNanyb):Ei:ﬁ;\lfluab(mi
ics is based on the fractal nature of the objects such as poly=rj|) is the total energy of unlike interactionsp
mer coils, star polymers, and dendrim¢g3. For example, =1/(kgT), kg is the Boltzmann constant. Introducing
interaction between the centers of mass of polymer coils iF’(RNe; T, py),

an athermal solvent is adequately described by a “Gaussian

core model”(GCM) [3], where the repulsive potential efﬁf’zf drNog = BlUbb(re) + Ugp(RMa, o)) 3)

u(r)=eexp— rz”g)’ >0, @) we can write Eq(2) as

is finite for all separations and characterized by a cutoff e BF= J dRNa g™ AHerr
distance of the order of., the radius of gyration of the
coils; € sets the energy scale. The mesoscopic approach is

also used in computer simulations of large-scale phenomeﬁ’é{here

in fluids within the dissipative particle dynamid®PD) Her(RNa; pp , T)=Uo(RNa)+ F'(RNa; py , T)  (4)
method[4] where the interactions between fluid “particles”

are usually described by a parabolic mo¢eM) is the effective Hamiltonian o particles in the presence of

theb componentp,=N,/V. From the form of Eq(3), it is

r\2 0=re clear thatF'(RNa;T,pp) is the Helmholtz free energy df
u(r)= €l 1- E , USTSTe particles in the external field imposed by a fixed configura-
0 = tion RNa of the a component. Using thalgebraic perturba-
l =1lcH

tion theory[ 7] based on Ruelle’s rigorous expans|@&f, one
can write 7' in the exact form
which can be obtained by averaging the molecular field over = pn
f[he rapidly fluctuating motions of atoms during short time T'=fb—kBTz _:)én (5)
intervals[5]. =

In the framework of this coarse-grained description, we
consider &binary fluid mixtureof speciesa andb character- where Fy,(Ny,,V,T) is the free energy of the putesystem
ized by purely repulsive soft potentials,lfz(rij), T1,To and
=a,b with the energy scalesw2 and length scalescT - n

1'2 gn: f drn

Na
11 f‘?xnx)hé”)(r”;pb,T)-

In the present paper, we show that such a system possesses )

an effective attraction between like particles for sufficiently
strong unlike interactions. This effect can be termed soffyeren(" (1" p, ,T) are algebraic combinations of the corre-
depletion by analogy with hard-core depletion in colloidal |ation functions of orders 1n-of the pureb system and
systemg6]. The theory we develop is insensitive to a par- N,
ticular form of soft potentialsi,, . . RNa
The Helmholtz free energylo$ the systemNf particles fe’“k_exr{ ﬂiz'l Uan([Ri =)
of speciesa andNy, particles of specieb in the volumeV at
a temperaturd’ is is the Mayer function of thé particle in the external field of
all a particles. We emphasize that E§) is not a virial-type
expression due to the dependencehf? on p, for n=2.
*Electronic address: V.Kalikmanov@tn.tudelft.nl The structure oh{" provides convergence of the integrals:
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h{’=1 and for alln=2 the functionsh{"”(r") vanish at
large interparticle separations. Fér and &,, we have[7]

Na Na Na
G=fdrifey,  &=Jdrydr, f8 foe ho(r),  where where
hy(r12;pp,T) is the total pair correlation function of the pure

b system. Uei(Rij ;op, T) = Uaa(Rij) + AU(Rij 5 pp, T) (12

The energy scale of a potential depends on a system under _ _ ) ) )
study. For example, for polymers the renormalization groug$ the'effectwe pair potential & partlcles in the presence of
analysis and simulation studié] show thate in Eq. (1) is P particles. Note thahu appears in the second-order u,,)
of the order ofkgT and decreases with increasing degree ofPerturbation theory, whereas in the first-order theory, interac-
polymerization or with worsening of solvent quality. It is tion betweera particles remains unchanged.
therefore plausible to study the case of sngdl,, the as- Calculation ofAu requires the knowledge k,(r;pp, T).
sumption that enables to facilitate model calculationste ~ That is why we first discusthermodynamics of a pure sys-

that the inverse cas@e,,— corresponds to the hard-core {€msettingrc=1 and omitting the subscrip(or b). The
limit) ExpandinngN{ to the second order i, we ob- isothermal compressmlllt)(T is related toh(r) via the com-
' ext, ?

tain

Heﬁ(RNa?Pb-T):fb+fself+iE<j Uert(Rij b, T), (11

pressibility equation of state;:kBTxTz 1+pﬁ(k= 0), which
1 using the Ornstein-Zernike equation yields
§1=Naf dr(—Buab(r)Jrgﬁz[uab(r)]2 1 dp

kB_T%:l_pC(k:O). (13)

+,321 > fdr Uap(NUap(IT +Rj),  (6)

<i<j<=N,

Here,p is the pressuré)(k) andc(k) are the Fourier trans-
forms of h(r) and the direct correlation functioe(r), re-
§2=,32Naf dr1dry Uap(r)Uap(r2)hp(r1p) spectively. We apply the random phase approximatiRinA)
setting c(r)=—Bu(r). Monte Carlo simulations of GCM
demonstrated that RPA accounts well for pair correlations

+2? Z f dr1drp Uap(|Ri— 1)) uap(|R; and equation of statel0,11]. One can expect this to be also
1=i<j=Na true for other soft potentials. The Fourier transforms@f)
— 1)) hy(r ). (77  for GCM and PM read, respectively,
~ 1
From Eqgs.(5), (6), and(7), F' reads Coom(k)=—72B€ exp{ - Zkz) ,
F'=Fp+ Feeirt <_2< Au(Rjj;pp,T). tS) - k cosk— 3 sink+ 2k
I=i<j=Ng CpM(k):_B’ﬂ'ﬂE k5 .
Here, Fsq s is the average energy of noninteractagarticles
in the external field of the other species and therefore can btegrating Eq.(13), we obtain
termed as the “self-energy”:
% pl(keT) =p-+ xBep? (14)

Fseir=Na Usei( Pp, T), C)
1 with kgom= 372 and kpy= 7/15. The absence of a core
Userf Pb ,T)=pr dr[ Uap(1) — = Bl Uan(1) ]2 has an important impact on the thermodynamic behavior: the
2 pressure increases very slowly with the denspy~ pg.
1 This statement is confirmed by the DPD simulations of PM
- —Bpﬁf dr1dry Uap(r)Uap(r2)hp(rip). [4], where the equation of state was found to be of the type
2 (14) with «py,P~0.202+0.002, which is in a very good
(100  agreement with oukpy~0.209. The functior(r) is given
by the inverse Fourier transform:
Note that Eq.(10) takes into account fluctuations of this

field. F¢o is similar to the “volume term” encountered in * ke(k) .
the models of charged colloidal suspensi¢@$ The last h(rip.T)= zﬁerO l_p,é(k)lsm(kr). (15
contribution to F' contains Au=Auy(Rjj;pp,T)
+Au,(Rij ;pp, T) with Now we have all the necessary ingredients to study the
effective potential given by Eq12). It is sensitive to the
Aulz—,prf dr uab(r)uab(|r+Rij|), range and energy scales of interactions, as well as to the

temperature and density. If the unlike interactions are stron-

s ger than the like ones and/or more long ranged, one can

Au,= _:3be dr1dra Uap(|Ri =1 1) Uan(|Rj =12 hp(r 1. expect theeffective attraction between like particlas suffi-
ciently low temperatures, the effect which can be termed

Summarizing, we obtain from Eq&) and(8) “soft depletion,” since it is similar(but not identical to
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FIG. 1. Effective interaction betweeamparticles for the Gauss- FIG. 2. Effective interaction betweem particles for the para-

ian core model at=kgT/e,,=1.2 for variouspy, (solid lineg. The  bolic model. Notations are the same as in Fig. 1.

curves are labeled by the value mfrgab. Also shown is the pure

potentialuz, = Uaa/ €ap (dashed ling a-a interactionu”=%(R;;) = u44(R;;), while atv=1 we re-
coverugy: U"I(R;) =Uex(R;j). Using the standard argu-

depletion in a mixture of hard-core particles. In the modelsment, we obtain

proposed by several authd], the effective attraction in a 1 1

system of m.utually'repelllng parltlcles was dlscusse_d fqr Fot=Fat Epif dvj dR;dR, AUu(R1) g™ (Ryy),

hard-sphere interactions where this effect is of entropic ori- 0

gin. For particles without cores, both entropic and energetic )

contributions to the free energy are important. Figure 1where 7 is the free energy of the pura system, p,

shows the effective potential afparticles in a “symmetric’  =Na/V, andg"”(R) is the pair correlation function of the

GCM mixture (e..= €pp, rcaa:rcbb) at the temperatur¢ ~ System with the potential” at the density, and tempera-

=kgT/€e,,=1.2. The values of interaction parameters @re tre T. To be consistent with the second-ordaT u,y) per-

=€,a/€5p=0.2, anda=r,_/r, =1. Curves are labeled by turbation tr(1e)ory, we ke?pzig‘eﬁ the term linear inu, thus
aa’ “ab - 3 replacingg'”’(R) with g""="(R)=g.(R), the pair correla-

the value of the reducel particle densitypy =purc, - At tion function of the purea system. Integration over yields

low densitiesp,<0.45, interactiorugy(R5) betweerna par-  F4=F,+AF with

ticles is repulsive at short distances, reaches a minimum, "

beyond which it becomes attractive tending asymptotically to AF=2mNgp,r gabf dX XPAuU(X; pp)da(X;pa), (17)

zero at largeR;,. The increase imp, results in stronger at- 0

tractive forces(given by the slope of the potential curyes

which at the same time become more short ranged.pior

>0.45, the potential curves show oscillatory behavior: be{15).

yond the pointR* , Whereueff is at its maximum(e_g_, for Let us Study first the behavior of the mixture afixed

pp=1, R%~1.9), the attractive part is followed by a repul- density of bparticles. Then,7, in Eq. (16) is an additive

sive tail. Soft depletion does not occur in the case wherfonstant and can be omitted. What we are left with is a

unlike repulsion is weaker than repulsion between like parSingle-component system with interactiong; in the exter-

ticles, i.e., wheny>1. The same qualitative features albeit N@l field whose average energy per particleidg;. The ef-

for different values op; are shared by PM as shown in Fig. fective pressure, is found from Egs(9), (14), and(17),

2. The appearance of the oscillatory partuig at high py Ha IBUgs

where x=R12/rCab and g,=h,+1 with h, given by Eq.

suggest_s that the mgltibody 'germs in effective infcerz_action T —Pa +pp 5 +p§§,
may be important at higp,, while at lowp, they are insig- B Pb
nificant. where
Soft depletion manifests itself by driving a phase transi-
tion. To study the phase behavior of the binary system with g(PavPb T Mo, 3 o
the Hamiltonian(11), we consider its free energy — T <Peaa +277J;) dx X’ BAug,
c Cab
F=Fer[Uet]) + Feerl Na,po, T) + Fo(Np,V,T). (16) *
JdBAU 49,
Here, F.¢ is the free energy of the system af particles tho apn 9a+BAUpaa—pa :

interacting viaue4(R); Fex can be found by thermodynamic

integration[12]. To this end, we introduce an auxiliary inter- Monte Carlo simulations of @ure GCM system[11] show
action potentialu”(R;;) =U,(R;j) + Au(R;;), where 0 that at high densities, it behaves as a weakly correlated
<p=<1 is the coupling parameter; at=0, it reduces to the “mean-field fluid.” This implies that at higl,, g, shows an
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ideal-gas-like behavior anB becomes virtually independent _ Kpt 3 )
of p, resulting in the equation of state of the fofiy); the f(d.p=¢INd+(1-¢)In(1- )+ ——[vaaa(1-¢)
important difference from a pure system, however, is trEt the -

quadratic term can be both positive and negative. Bor + Y 1+ V(. p ) p(1—)+Inp,. (18
>0, the system is stable and homogeneousB40, the In the case of a symmetric mixture,=y,=vy, a,=ay
system collapses. In a special caseBof0, the pressure =a, Eq.(18) is simplified to

scales linearly withp, ; hence, foB=0 the systenat high fsym(@ip) = INp+ (1= P)IN(1— )+ x(,pi ;1) (1
pa behaves as an ideal gas with the renormalized density

3
pal 1+ ppdBusei/ dpy]. These features make the effective — )+ Kprye +Inp,|, (19
system qualitatively different from a van der Waals fluid in t
which at high densities the excluded volume effect always,here x(bpiit)=— 2kpyadlt + W (d,piit). If we as-

dominates attractions thus being a stabilizing factor. The efg ;e thatp, is approximately constant, then apart from the
fective system does not possess the liquid-vapor transitioBynstant term in the square brackets, @) has the form of
with a characteristic van der Waals loop. the Flory-Huggins expression for the free enetBy, of a

In order to search for possible phase transitions, we returgolymer mixture[14] if we identify fsym With Fryy/kgT and
to the full binary mixture description introducing the reducedX with the Flory y-parameteithe possibility of the free en-
total densityp,=(pa+ pb)rgab, the fractions of components ergy density mapping to the Flory-Huggins model was
$a=Na/N, ¢p=N,/N, N=N,+N, satisfying ¢,+¢, Pointed out in Ref[4]). Possible phase transitions are of

=1, and interaction parameters y,= eaa/eab, Yb |IQU|d-|IQU|d and |IQU|d-SO|Id type. Applylng the stan'd.ard sta-
= e/ €ap) “a:rcaa/rcab' ab:rcbb/rcab' Let us consider Pility analysis, one can conclude that below a critical tem-

. peratureT.(p;), the system is separated into theich and
the reduced free energy per particle b-rich phases. The striking feature is that this mixing-

F demixing transition is caused by purely repulsive interac-
f= ) tions. Note that our model does not invoke amyriori as-
NkgT sumptions about the unlike correlation functiang(r) and

hap(r). This feature may be important since it is these inter-
The combined contribution of the puaeandb systems tdis  actions that are responsible for the soft depletion.
obtained by integration of their equation of st&id): In conclusion, the theory presented in this paper predicts
the effect of soft depletion—an effective attraction between
Ptk like particles in a binary fluid with soft repulsive potentials -
pure_ e 3,2 3,2 - ( Lrep
f baln dat &N Go+t == (Yadadat yoxudp) +INpr, which occurs when the unlike repulsion is stronger than the
repulsion between like particles. This effect is a generic phe-
where the term with the irrelevant de Broglie thermal wave-1°menon driving the phase separation. We expect that at
length is omitted. The contributior&® and f4 from F.u high densities, the oscillatory part ung will probably be
and AF are obtained using Eqg9), (10), (15)—(17): f! smoothed out by successive multibody terms in effective in-
A=W (b pit) bache Where\If(;;’)b Pt,'t) is calculateq teractions so that soft depletion will become more
1 1 a L] 1 L] .
numerically(the details are presented elsewh@]). Thus, ~Pronounced—a problem to be explored in future work.

the reduced free energy can be written as a functioof | am grateful to R. Evans, S. de Leeuw, and J. Heringa for
= ¢, andp; at a givent: useful discussions and helpful comments.
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